Manage Prompt with the SDK
In this guide, we'll explore all actions performed through the SDK: creating variants, committing changes, deploying changes, and fetching configurations. For a simpler introduction, please refer to the prompt mangement tutorial.
Before starting, we recommend to get acquainted with how versioning works in Agenta. You can find more details on the concepts page, or read the quick summary below.
Agenta follows a structure similar to git for prompt versioning. Instead of a single commit history, you can create multiple branches—called variants. Each variant represents a distinct approach or solution you're exploring.
To move from experimentation to deployment, Agenta uses environments like development, staging, and production. You can deploy specific versions of your variants to these environments, controlling what gets tested and what goes live.
The workflow of deploying something to production is therefore as follows:
- (optionally) Create a new variant (branch)
- Commit a change to that variant
- Deploy that commit (variant/version) to an environment
Setup
Before using the SDK, you need to initialize it using the ag.init()
method.
import agenta as ag
# Initialize the SDK with your API key
os.environment["AGENTA_API_KEY"] = "xxx" # Only needs setting in oss
os.environment["AGENTA_HOST"] = "https://cloud.agenta.ai" # default value no need setting explicitly
ag.init()
Creating a new prompt
Each prompt in agenta is a unique application. Currently creating a prompt is only available in the web UI. To create a new prompt, just click on create a new prompt and select whether it's a chat or completion prompt in the web UI.
Committing changes
Creating a New Variant
To create a new variant, use the VariantManager.create_variant
method.
from agenta import Prompt
# Prompt is a pydantic BaseModel, for additional validation
my_prompt = Prompt(
temperature=0.7,
model="gpt-3.5-turbo",
max_tokens=150,
prompt=[
{"role": "system", "content": "You are an assistant that provides concise answers"},
{"role": "user", "content": "Explain {topic} in simple terms"}
],
top_p=1.0,
frequency_penalty=0.0,
presence_penalty=0.0
)
# Create a new variant
variant = ag.VariantManager.create_variant(
parameters=my_prompt.model_dump(),
app_slug="my-app-slug",
# app_id="my-app-id", # you can also use `app_id`
variant_slug="my-variant-slug",
)
print("Created variant:")
print(variant)
This command will create a new variant and initialize it with the first commit containing the parameters provided
- Parameters:
app_slug
: The slug of your application.variant_slug
: The slug of the new variant.parameters
: A dictionary containing the initial configuration parameters.
Note: If a variant with the same slug
and version
already exists, the SDK will raise an exception.
Sample Output:
Created variant:
{
'parameters': {
'temperature': 0.7,
'model': 'gpt-3.5-turbo',
'max_tokens': 150,
'prompt_system': 'You are an assistant that provides concise answers.',
'prompt_user': 'Explain {topic} in simple terms.',
'top_p': 1.0,
'frequency_penalty': 0.0,
'presence_penalty': 0.0
},
'app_id': 'my-app-id',
'app_slug': 'my-app-slug',
'variant_id': 'new-variant-id',
'variant_slug': 'my-variant-slug',
'variant_version': 1,
'committed_at': 'current-datetime',
'committed_by': 'my-email-address',
'committed_by_id': 'my-user-id',
}
Committing Changes to a Variant
To save changes to a variant (creating a new version), use the VariantManager.commit_variant
method with explicit parameters.
my_prompt2 = Prompt(
temperature=1.0,
model="gpt-4",
max_tokens=150,
prompt=[
{"role": "system", "content": "You are an assistant that provides concise answers"},
{"role": "user", "content": "Explain {topic} in simple terms"}
],
top_p=1.0,
frequency_penalty=0.0,
presence_penalty=0.0
)
# Commit the new version
variant = ag.VariantManager.commit_variant(
parameters=my_prompt2.model_dump(),
app_slug="my-app-slug",
variant_slug="my-variant-slug",
)
print("Committed new version of variant:")
print(variant)
Each commit creates a new version of the variant. Versions are immutable once created.
Sample Output:
Committed new version of variant:
{
'parameters': {
'temperature': 1.0,
'model': 'gpt-4',
'max_tokens': 150,
'prompt_system': 'You are an assistant that provides concise answers.',
'prompt_user': 'Explain {topic} in simple terms.',
'top_p': 1.0,
'frequency_penalty': 0.0,
'presence_penalty': 0.0
}
'app_id': 'my-app-id',
'app_slug': 'my-app-slug',
'variant_id': 'updated-variant-id',
'variant_slug': 'my-variant-slug',
'variant_version': 2,
'committed_at': 'current-datetime',
'committed_by': 'my-email-address',
'committed_by_id': 'my-user-id',
}
Deploying to an Environment
To deploy a variant to an environment, use the DeploymentManager.deploy_variant
method with the variant reference and environment_slug
: The slug of the environment (development
, staging
, or production
).
# Deploy the variant to the staging environment
deployment = ag.DeploymentManager.deploy_variant(
app_slug="my-app-slug",
# app_id="my-app-id", # you can also use `app_id`
variant_slug="my-variant-slug",
variant_version=None, # Optional: If not provided, deploys the latest version
environment_slug="staging"
)
print("Deployed variant to environment:")
print(deployment)
- Deploying a variant without specifying a
variant_version
deploys the latest version. - Only predefined environments with slugs
development
,staging
, andproduction
are currently supported.
Sample Output:
Deployed variant to environment:
{
'parameters': {
'temperature': 0.7,
'model': 'gpt-3.5-turbo',
'max_tokens': 150,
'prompt_system': 'You are an assistant that provides concise answers.',
'prompt_user': 'Explain {topic} in simple terms.',
'top_p': 1.0,
'frequency_penalty': 0.0,
'presence_penalty': 0.0
},
'app_id': 'my-app-id',
'app_slug': 'my-app-slug',
'variant_id': 'new-variant-id',
'variant_slug': 'my-variant-slug',
'variant_version': 1,
'environment_id': 'staging-enviroment-id',
'environment_slug': 'staging',
'environment_version': 1,
'deployed_at': 'current-datetime',
'deployed_by': 'my-email-address',
'deployed_by_id': 'my-user-id',
}
Fetching Configurations
You can fetch the configurations from a variant reference (app_slug
, variant_slug
, variant_version
) or an environment reference (app_slug
, environment_slug
). The default behavior when fetching is to fetch the latest configuration from the production
environment. If you don't provide a _version
parameter but only a variant_slug
or an environment_slug
, the SDK will fetch the latest version of the variant from the specified environment/variant.
Default Behavior when fetching
If you don't provide either variant
or environment
identifiers, the SDK fetches the latest configuration deployed to the production
environment.
# Fetch configuration from the latest version in production (default)
config = ag.ConfigManager.get_from_registry(
app_slug="my-app-slug"
# app_id="my-app-id", # you can also use `app_id`
)
print("Fetched configuration from production:")
print(config)
Fetching by Variant Reference
# Fetch configuration by variant
config = ag.ConfigManager.get_from_registry(
app_slug="my-app-slug",
# app_id="my-app-id", # you can also use `app_id`
variant_slug="my-variant-slug",
variant_version=2 # Optional: If not provided, fetches the latest version
)
print("Fetched configuration:")
print(config)
Sample Output:
Fetched configuration:
{
'parameters': {
'temperature': 1.0,
'model': 'gpt-4',
'max_tokens': 150,
'prompt_system': 'You are an assistant that provides concise answers.',
'prompt_user': 'Explain {topic} in simple terms.',
'top_p': 1.0,
'frequency_penalty': 0.0,
'presence_penalty': 0.0
}
'app_id': 'my-app-id',
'app_slug': 'my-app-slug',
'variant_id': 'updated-variant-id',
'variant_slug': 'my-variant-slug',
'variant_version': 2,
'committed_at': 'current-datetime',
'committed_by': 'my-email-address',
'committed_by_id': 'my-user-id',
}
Fetching by Environment Reference
# Fetch the latest configuration from the staging environment
config = ag.ConfigManager.get_from_registry(
app_slug="my-app",
environment_slug="staging"
environment_version=1 # Optional: If not provided, fetches the latest version
)
print("Fetched configuration from staging:")
print(config)
Sample Output:
Fetched configuration from staging:
{
'parameters': {
'temperature': 0.7,
'model': 'gpt-3.5-turbo',
'max_tokens': 150,
'prompt_system': 'You are an assistant that provides concise answers.',
'prompt_user': 'Explain {topic} in simple terms.',
'top_p': 1.0,
'frequency_penalty': 0.0,
'presence_penalty': 0.0
},
'app_id': 'my-app-id',
'app_slug': 'my-app-slug',
'variant_id': 'new-variant-id',
'variant_slug': 'my-variant-slug',
'variant_version': 1,
'environment_id': 'staging-enviroment-id',
'environment_slug': 'staging',
'environment_version': 1,
'deployed_at': 'current-datetime',
'deployed_by': 'my-email-address',
'deployed_by_id': 'my-user-id',
}
Deleting a Variant
To delete a variant, use the VariantManager.delete_variant
method.
# Delete a variant
ag.VariantManager.delete_variant(
app_slug="my-app",
# app_id="my-app-id", # you can also use `app_id`
variant_slug="obsolete-variant"
)
print("Variant deleted successfully.")
- Deleting a variant removes all versions of the variant. This action is irreversible.
- Attempting to delete a variant that is deployed to an environment will fail.
Listing All Variants
To list all variants of an application, use the VariantManager.list_variants
method.
# List all variants
variants = ag.VariantManager.list_variants(
app_slug="my-app"
# app_id="my-app-id", # you can also use `app_id`
)
print("List of variants:")
for variant in variants:
print(variant)
Sample Output:
List of variants:
{
'parameters': {
'temperature': 1.0,
'model': 'gpt-4',
'max_tokens': 150,
'prompt_system': 'You are an assistant that provides concise answers.',
'prompt_user': 'Explain {topic} in simple terms.',
'top_p': 1.0,
'frequency_penalty': 0.0,
'presence_penalty': 0.0
}
'app_id': 'my-app-id',
'app_slug': 'my-app-slug',
'variant_id': 'updated-variant-id',
'variant_slug': 'my-variant-slug',
'variant_version': 2,
'committed_at': 'current-datetime',
'committed_by': 'my-email-address',
'committed_by_id': 'my-user-id',
}
{
'parameters': {
'temperature': 0.5,
'model': 'gpt-3.5-turbo',
'max_tokens': 100,
'prompt_system': 'You are an assistant that provides concise answers.',
'prompt_user': 'Explain {topic} in simple terms.',
'top_p': 1.0,
'frequency_penalty': 0.0,
'presence_penalty': 0.0
}
'app_id': 'my-app-id',
'app_slug': 'my-app-slug',
'variant_id': 'another-variant-id',
'variant_slug': 'another-variant-slug',
'variant_version': 1,
'committed_at': 'another-datetime',
'committed_by': 'another-email-address',
'committed_by_id': 'another-user-id',
}
Fetching a Variant's history
To list all versions for a variant of an application, use the VariantManager.list_variants
method.
# List all variants
variants = ag.VariantManager.list_variants(
app_slug="my-app"
# app_id="my-app-id", # you can also use `app_id`
)
print("List of variants:")
for variant in variants:
print(variant)
Sample Output:
List of variants:
{
'parameters': {
'temperature': 1.0,
'model': 'gpt-4',
'max_tokens': 150,
'prompt_system': 'You are an assistant that provides concise answers.',
'prompt_user': 'Explain {topic} in simple terms.',
'top_p': 1.0,
'frequency_penalty': 0.0,
'presence_penalty': 0.0
}
'app_id': 'my-app-id',
'app_slug': 'my-app-slug',
'variant_id': 'updated-variant-id',
'variant_slug': 'my-variant-slug',
'variant_version': 2,
'committed_at': 'current-datetime',
'committed_by': 'my-email-address',
'committed_by_id': 'my-user-id',
}
{
'parameters': {
'temperature': 0.5,
'model': 'gpt-3.5-turbo',
'max_tokens': 100,
'prompt_system': 'You are an assistant that provides concise answers.',
'prompt_user': 'Explain {topic} in simple terms.',
'top_p': 1.0,
'frequency_penalty': 0.0,
'presence_penalty': 0.0
}
'app_id': 'my-app-id',
'app_slug': 'my-app-slug',
'variant_id': 'another-variant-id',
'variant_slug': 'another-variant-slug',
'variant_version': 1,
'committed_at': 'another-datetime',
'committed_by': 'another-email-address',
'committed_by_id': 'another-user-id',
}
Asynchronous Operations
If your application uses asynchronous programming, you can use the async versions of the methods (see the a
prefix in the function name).
# Asynchronous fetching of configuration
config = await ag.ConfigManager.aget_from_registry(
app_slug="my-app",
# app_id="my-app-id", # you can also use `app_id`
variant_slug="my-variant-slug",
variant_version=2
)
print("Fetched configuration asynchronously:")
print(config)